对Leetcode 198. House Robber 题目的求解。
Problem Description
You are a professional robber planning to rob houses along a street. Each house has a certain amount of money stashed, the only constraint stopping you from robbing each of them is that adjacent houses have security system connected and it will automatically contact the police if two adjacent houses were broken into on the same night.
Given a list of non-negative integers representing the amount of money of each house, determine the maximum amount of money you can rob tonight without alerting the police.
Example
Example 1
Input: [1,2,3,1]
Output: 4
Explanation: Rob house 1 (money = 1) and then rob house 3 (money = 3).
Total amount you can rob = 1 + 3 = 4.
Example 2
Input: [2,7,9,3,1]
Output: 12
Explanation: Rob house 1 (money = 2), rob house 3 (money = 9) and rob house 5 (money = 1).
Total amount you can rob = 2 + 9 + 1 = 12.
Analysis
这道题是一道比较简单的动态规划问题。因为所有的动态规划问题的解决都基于局部最优的推广,在这个问题中,我们想要在不违反约束的情况下拿到n个house最多的现金,所以我们考虑,如果我们已经有前n-1个房子的最优解,这个时候只需要考虑抢不抢第n的房子就行了。根据题目给的约束我们可以得到 \begin{equation} dp[n] = Max(dp[n-1], dp[n-2] + a[n]) \end{equation} 其中,dp[n]代表前n个房子最多的钱,a[n]表示第n的房子的现金。在实现的时候,为了方便计算,我们将dp[0],dp[1]均设置为0,dp[n]对应低n-2个房子。
Solution
class Solution {
class Solution {
public static int rob(int[] nums) {
if (nums.length == 0) return 0;
if (nums.length == 1) return nums[0];
int dp[] = new int [nums.length + 1];
dp[1] = nums[0];
for (int i = 2; i < nums.length + 1; ++i){
dp[i] = Math.max(dp[i-1], dp[i-2] + nums[i-1]);
}
return Math.max(dp[nums.length], dp[nums.length - 1]);
}
}
Optimized Solution
仔细观察发现,空间复杂度还有优化的空间,因为我们用到的数组其实每次迭代只需要2个元素。
class Solution {
public static int rob(int [] nums) {
if (nums.length == 0) return 0;
if (nums.length == 1) return nums[0];
int a = 0, b = 0;
int tmp;
for (int i = 0; i < nums.length; ++i){
tmp = Math.max(b, a + nums[i]);
a = b;
b = tmp;
}
return Math.max(a,b);
}
}